Numerical Solution to Boundary Layer Flow and Mass Transfer of Casson Fluid over a Porous Stretching Sheet with Chemical Reaction and Suction

T. Hymavathi* and W. Sridhar2

1 Department of Mathematics, Adikavi Nannaya University, Rajamundry, A.P., INDIA.
2Department of Mathematics, K L E F Deemed to be University, Guntur, A.P., INDIA.
*Corresponding Author: talla.hymavathianur@gmail.com.

(Received on: June 4, 2018)

ABSTRACT

In the present work, the effect of mass transfer of a Casson fluid over a porous stretching sheet in presence of Chemical reaction is investigated using Keller Box method. The resulting nonlinear flow is solved to get a series solution. The variations in velocity and concentration fields are presented for various flow parameters. We further analyzed that the concentration profile decreases rapidly compared with the velocity of the fluid with increase in suction parameter.

Keywords: Casson fluid, stretching sheet, Suction, Mass transfer, Chemical reaction.

INTRODUCTION

Generally non Newtonian fluids are more stable when compared with Newtonian fluids. Hence the study of such fluids is more important. Some examples of non Newtonian fluids are Maxwell fluid, Jeffery fluid, Casson fluid, Visco-elastic fluid etc., In recent years, Casson fluids become more popular in the study of non Newtonian fluids. Tomato soup, jelly, honey, blood of human etc., are some examples of casson fluids.

Crane1 investigated the study of flow past a stretching surface. The recent investigations by hayat et al.2, influence of thermal radiation and joule heating on MHD flow of a Maxwell fluid in presence of thermophoresis, Fang et al.3 unsteady boundary layers over a stretching surface, khan and pop4, boundary flow of a nano fluid past a stretching sheet, hayat et al.5, mixed convection flow of a micropolar fluid with radiation and chemical reaction,
Ibrahim et al.\textsuperscript{6} chemically reacting MHD boundary boundary layer flow with heat and mass transfer past a moving vertical plate with suction motivated us to do the present work. Hayat et al.\textsuperscript{7} studied the effect of mass transfer on MHD flow of casson fluid with chemical reaction and suction analytically using Homotopy analysis method. In the present work, numerical solution to mass transfer on flow of a casson fluid with suction and chemical reaction using Keller box method (cebeci and bradshaw\textsuperscript{8}). The constitutive equations of casson fluid model are considered from Nakamura et al.\textsuperscript{9}, Eldabe et al.\textsuperscript{10}, Dash et al.\textsuperscript{11}, Boyd et al.\textsuperscript{12}. The constitutive governing equations are converting to ordinary equations by using similarity transformations and solved using keller box method. The velocity and concentration profiles are presented for various values of casson parameter, reaction ate parameter, suction parameter and Schmidth number. The results are seen good in agreement.

2. EQUATIONS OF MOTION

Consider an incompressible flow of a Casson fluid over a porous stretching surface at $y = 0$, We select the Cartesian coordinate system such that the $x$ –axis be taken parallel to the surface and $y$ is perpendicular to the surface. The fluid occupies a half space $y > 0$. The mass transfer phenomenon with chemical reaction is also retained. The rheological equation of state for an isotropic flow of a Casson fluid can be expressed as (Eldabe and Silwa\textsuperscript{10})

$$
\tau_{ij} = \begin{cases}
2(\mu_B + P_y/\sqrt{2\pi})e_{ij}, & \pi > \pi_c \\
2(\mu_B + P_y/\sqrt{2\pi c})e_{ij}, & \pi < \pi_c
\end{cases}
$$

(1)

In the above equation $\pi = e_{ij}e_{ij}$ and $e_{ij}$ denotes the (i, j)th component of the deformation rate, $\pi$ the product of the component of deformation rate with itself, $\pi_c$ a critical value of this product based on the non-Newtonian model, $\mu_B$ the plastic dynamic viscosity of the non-Newtonian fluid and $p_y$ the yield stress of the fluid. The equations governing the steady boundary layer flow of the Casson fluid are (Mustafa et al.,\textsuperscript{13})

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

(2)

$$
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\left(1 + \frac{1}{\beta}\right) \frac{\partial^2 u}{\partial y^2}
$$

(3)

$$
u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D \frac{\partial^2 C}{\partial y^2} - k_1 C
$$

(4)

where $u$ and $v$ are the components of velocity respectively in the $x$ and $y$ directions, $\nu$ is the kinematic viscosity, $\rho$ is the fluid density (assumed constant), $\beta = \mu_B\sqrt{2\pi c}/P_y$ is the non-Newtonian parameter of the Casson fluid, $D$ is the diffusion coefficient, $k_1$ reaction rate and $C$ is the concentration rate.
Boundary Conditions

The appropriate boundary conditions for the problem are given by
\[ u = u_w(x) = cx, \quad v = v_0, \quad C = C_w \text{ at } y = 0 \]
as \( y \to \infty, \quad u \to 0, \quad C \to C_\infty \) \hfill (5)
Equations (2)-(6) can be made dimensionless by introducing the following change of variables
\[ u = cx \phi(\eta), \quad v = -\sqrt{cvf(\eta)}, \quad \eta = y \sqrt{\frac{c}{v}}, \quad \phi = \frac{C - C_w}{C_w - C_\infty} \]
The dimensionless problem satisfies
\[ \left( 1 + \frac{1}{\beta} \right) f''' + ff'' - f''^2 = 0 \] \hfill (8)
\[ \phi'' - Scf\phi' - Sc\gamma \phi = 0 \] \hfill (9)
and the boundary conditions take the following form
at \( \eta = 0, f = S, \phi = 1, f' = 1 \) \hfill (10)
as \( \eta \to \infty, f' \to 0, \phi \to 0 \) \hfill (11)
where Eq. (2) is satisfied identically, \( Sc = \nu / D \) the Schmidt number, \( \gamma = k_1 / c \) the chemical reaction parameter and \( S = v_0 / \sqrt{\nu c} \) the suction parameter.

Numerical Procedure

Equation subject to boundary conditions is solved numerically using an implicit-finite difference scheme known as keller box method, as described by cebeci and Bradshaw. The steps followed are
1. Reduce (8)-(9) to a first order equation
2. Write the difference equations using central differences
3. Linearize the resulting algebraic equation by Newton’s method and write in matrix vector form
4. Use the block tridiagonal elimination technique to solve the linear system.

Consider the flow equation and concentration equations
\[ \left( 1 + \frac{1}{\beta} \right) f''' + ff'' - f''^2 = 0 \] \hfill (12)
\[ \phi'' - Scf\phi' - Sc\gamma \phi = 0 \] \hfill (13)
and the boundary conditions
\[ f(\eta) = 0, f'(\eta) = 1, \phi(\eta) = 1 \text{ at } \eta = 0 \] \hfill (14)
\[ f'(\eta) \to 0, \phi(\eta) \to 0 \text{ at } \eta \to \infty \] \hfill (15)
Introduce \( f' = p, \) \hfill (16)
\[ p' = q, \] \hfill (17)
\[ g' = n(g = \phi) \] \hfill (18)
eqn (12) and (13) reduces to
\[ (1 + \frac{1}{\beta}) q' + fq - p^2 = 0 \]  \hspace{1cm} (19)

\[ n' + Sc(fn - yg) = 0 \]  \hspace{1cm} (20)

consider the segment \( \eta_{j-1}, \eta_j \) with \( \eta_{j-1/2} \) as the mid point \( \eta_0 = 0, \eta_j = \eta_{j-1} + h_j, \eta_J = \eta_\infty \) \hspace{1cm} (21)

where \( h_j \) is the \( \Delta \eta \) spaces and \( j = 1, 2, \ldots, J \) is a sequence number that indicates the coordinate locations.

\[ \frac{f_j - f_{j-1}}{h_j} = \frac{p_j + p_{j-1}}{2} = p_{j-1/2} \]  \hspace{1cm} (22)

\[ \frac{p_j - p_{j-1}}{h_j} = \frac{q_j + q_{j-1}}{2} = q_{j-1/2} \]  \hspace{1cm} (23)

\[ \frac{g_j - g_{j-1}}{h_j} = \frac{n_j + n_{j-1}}{2} = n_{j-1/2} \]  \hspace{1cm} (24)

\[ \left( 1 + \frac{1}{\beta} \right) q_j - q_{j-1} + \left( \frac{f_j + f_{j-1}}{2} \right) \left( q_j + q_{j-1} \right) - \left( \frac{p_j + p_{j-1}}{2} \right)^2 = 0 \]  \hspace{1cm} (25)

\[ \frac{n_j - n_{j-1}}{h_j} + Sc \left( \frac{f_j + f_{j-1}}{2} \right) \left( \frac{n_j + n_{j-1}}{2} \right) - Sc \gamma g_j + g_{j-1} = 0 \]  \hspace{1cm} (26)

Equations (22) to (26) are imposed for \( j = 1, 2, 3, \ldots, J \) and the transformed boundary layer thickness \( \eta \) taken to the sufficiently large so that it is beyond the edge of the boundary layer. The bc’s are \( f_0 = 0, p_j = 0 \)

\[ p_0 = 1, g_0 = 1, g_1 = 0 \]  \hspace{1cm} (27)

**Newton’s method**

Linearizing the non linear system of equations (22) to (26)

Introduce

\[ f_j^{(k+1)} = f_j^{(k)} + \delta f_j^{(k)} \]

\[ p_j^{(k+1)} = p_j^{(k)} + \delta p_j^{(k)} \]

\[ q_j^{(k+1)} = q_j^{(k)} + \delta q_j^{(k)} \]

\[ g_j^{(k+1)} = g_j^{(k)} + \delta g_j^{(k)} \]

\[ n_j^{(k+1)} = n_j^{(k)} + \delta n_j^{(k)} \]  \hspace{1cm} (28)

Substitute in equations (12) to (15)

Write \( \delta f_j - \delta f_{j-1} - \frac{n_j}{2} (\delta p_j + \delta p_{j-1}) = (r_1)_{j-\frac{1}{2}} \)  \hspace{1cm} (29)

\[ 02.08.2018, \text{T. Hymavathi, et al., Comp. & Math. Sci. Vol.9 (6), 599-608 (2018)} \]
\[
\begin{align*}
\delta P_j - \delta P_{j-1} - \frac{h_j}{2} (\delta q_j + \delta q_{j-1}) &= (r_1)_j, \\
\delta q_j - \delta q_{j-1} - \frac{h_j}{2} (\delta n_j + \delta n_{j-1}) &= (r_2)_j, \\
(a_1)_j \delta q_j + (a_2)_j \delta q_{j-1} + (a_3)_j \delta f_j + (a_4)_j \delta f_{j-1} + (a_5)_j \delta p_j + (a_6)_j \delta p_{j-1} &= (r_3)_j, \\
(b_1)_j \delta n_j + (b_2)_j \delta n_{j-1} + (b_3)_j \delta f_j + (b_4)_j \delta f_{j-1} + (b_5)_j \delta q_j + (b_6)_j \delta q_{j-1} &= (r_4)_j, \\
(c_1)_j \delta f_j + (c_2)_j \delta f_{j-1} + (c_3)_j \delta p_j + (c_4)_j \delta p_{j-1} &= (r_5)_j.
\end{align*}
\]

where

\[
\begin{align*}
(a_1)_j &= 1 + \frac{\beta h_j}{4(\beta + 1)} (f_j + f_{j-1}), \\
(a_2)_j &= (a_1)_j - 2.0, \\
(a_3)_j &= \frac{\beta h_j}{4(\beta + 1)} (q_j + q_{j-1}), \\
(a_4)_j &= (a_3)_j, \\
(a_5)_j &= \frac{\beta h_j}{2(\beta + 1)} (p_j + p_{j-1}), \\
(a_6)_j &= (a_5)_j, \\
(b_1)_j &= 1 + \frac{S c h_j}{4} (f_j + f_{j-1}), \\
(b_2)_j &= (b_1)_j - 2.0, \\
(b_3)_j &= \frac{S c h_j}{2} (n_j + n_{j-1}), \\
(b_4)_j &= (b_3)_j, \\
(b_5)_j &= \frac{-S c h_j}{2}, \\
(b_6)_j &= (b_5)_j,
\end{align*}
\]

and

\[
\begin{align*}
(r_1)_j &= f_{j-1} - f_j + \frac{h_j}{2} (p_j + p_{j-1}), \\
(r_2)_j &= p_{j-1} - p_j + \frac{h_j}{2} (q_j + q_{j-1}), \\
(r_3)_j &= g_{j-1} - g_j + \frac{h_j}{2} (n_j + n_{j-1}), \\
(r_4)_j &= q_{j-1} - q_j - \frac{\beta h_j}{4(\beta + 1)} (f_j + f_{j-1}) (q_j + q_{j-1}) + \frac{\beta h_j}{4(\beta + 1)} (p_j + p_{j-1})^2.
\end{align*}
\]
\[ (r_j)_j = n_{j-1} - n_j - \frac{S_{ch_j}}{4} (f_j + f_{j-1})(n_j + n_{j-1}) + \frac{Sc_j h_j}{2} (g_j + g_{j-1}) \]

Taking \( j=1,2,3 \ldots \)

The system of equations becomes

\[ [A_1][\delta_1] + [C_1][\delta_2] = [r_1] \]  \hspace{1cm} (36)

\[ [B_j][\delta_1] + [A_2][\delta_2] + [C_2][\delta_3] = [r_2] \]  \hspace{1cm} (37)

\[ \ldots [B_{j-1}][\delta_1] + [A_{j-1}][\delta_2] + [C_{j-1}][\delta_3] = [r_{j-1}] \]

\[ [B_j][\delta_1] + [A_j][\delta_2] = [r_j] \]

Where

\[
A_1 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\
0 & d & 0 & 0 & d \\
0 & d & 0 & 0 & d \\
(a_2)_1 & 0 & (a_3)_1 & (a_4)_1 & 0 \\
0 & (b_2)_1 & (b_3)_1 & 0 & (b_4)_1 \\
\end{bmatrix} \quad A_j = \begin{bmatrix} d & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & d & 0 \\
0 & -1 & 0 & 0 & d \\
(a_6)_j & 0 & (a_7)_j & (a_8)_j & 0 \\
0 & (b_6)_j & (b_7)_j & 0 & (b_8)_j \\
\end{bmatrix}
\]

\[
B_j = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & d & 0 \\
0 & 0 & 0 & d & 0 \\
0 & (a_4)_j & (a_5)_j & 0 \\
0 & (b_4)_j & 0 & (b_5)_j \\
\end{bmatrix} \quad C_j = \begin{bmatrix} d & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
(a_7)_j & 0 & 0 & 0 & 0 \\
0 & (b_7)_j & 0 & 0 & 0 \\
\end{bmatrix}
\]

The Block Elimination Method

The linearized differential equations of the system has a block diagonal structure. This can be written in matrix form as

\[
\begin{bmatrix} [A_1] & [C_1] \\
[B_1] & [A_2] & [C_2] \\
\vdots \\
[B_{j-1}] & [A_{j-1}] & [C_{j-1}] \end{bmatrix} \begin{bmatrix} [\delta_1] \\
[\delta_2] \\
\vdots \\
[\delta_{j-1}] \end{bmatrix} = \begin{bmatrix} [r_1] \\
[r_2] \\
\vdots \\
[r_{j-1}] \end{bmatrix}
\]

This is of the form \( A \delta = r \)  \hspace{1cm} (39)

To solve the above system

To solve the above system
Write \([A] = [L][U]\) \hspace{1cm} (41)

Where

\[L = \begin{bmatrix}
[\alpha_1] \\
[\beta_2] \\
[\alpha_2]
\end{bmatrix}\]

and

\[U = \begin{bmatrix}
[\alpha_{j-1}] \\
[\beta_j] \\
[\alpha_j]
\end{bmatrix}\]

\[\begin{bmatrix}
[I] \\
[\Gamma_1]
\end{bmatrix}
\begin{bmatrix}
[I] \\
[\Gamma_2]
\end{bmatrix}\]

\[U = \begin{bmatrix}
[I] \\
[I]
\end{bmatrix}\]

(42)

Where \([I]\) is the identity matrix

\([\alpha_i \Gamma_i]\) are determined by the following equations

\([\alpha_1] = [A_1]\)
\([A_1][\Gamma_1] = [C_1]\)
\([\alpha_j] = [A_j] - [B_j][\Gamma_{j-1}]\]  \hspace{0.5cm} j=2,3, \ldots, J
\([\alpha_j][\Gamma_j] = [C_j]\]  \hspace{0.5cm} j=2,3, \ldots, J-1

Substituting (33) in (32)
LUδ = r

Let \(U \delta = W\) then LW = r

where \(W = \begin{bmatrix}
[w_1] \\
[w_2] \\
[w_{j-1}] \\
[w_j]
\end{bmatrix}\)

Now \([\alpha_1][w_1] = [r_1]\)
\[
[\alpha_j] [w_j] = [r_j] - [B_j][W_{j+1}] \quad \text{for } 2 \leq j \leq J
\]

Once the elements of \( W \) are found, substitute in \( L\delta=W \) and solve for \( \delta \)
\[
[\delta_j] = [W_j]
\]
\[
[\delta_j] = [W_j] - [\Gamma_j][\delta_{j+1}], \quad 1 \leq j \leq J-1
\]

These calculations are repeated until some convergence criterion is satisfied and we stop the calculations when \( |\delta g_i^{(0)}| \leq \varepsilon \), where \( \varepsilon \) is very small prescribed value taken to be \( \varepsilon = 0.0000001 \).

3. RESULTS AND DISCUSSION

The velocity and concentration profiles are plotted graphically using MATLAB for various value of Casson parameter, suction parameter, reaction rate parameter, Schmidt number. It is observed that the velocity is found to be decreasing with increase in casson parameter as shown in figure 2a. where the values of \( S=0.5, Sc=10 \) and \( \gamma=0.3 \) and also Velocity is found to be decreasing with increase in suction parameter as shown in figure 2b. where the values of \( \gamma=0.3, \beta=0.6, Sc=10 \), no change in velocity is found with increase in reaction rate parameter shown in figure 2c. where the values of \( S=0.5, \beta=0.6, Sc=0.8 \).

![Fig 2a: Velocity profiles for variation in \( \beta \)](image1)

![Fig 2b: Velocity profiles for variation in \( S \)](image2)

![Fig2c: Velocity profiles for various values of \( \gamma \)](image3)
Concentration is found to be increasing with increase in casson parameter as shown in figure 3a. where the values of \( S=0.5, \beta=0.8 \) and \( \gamma=0.3 \). Also concentration is found to be decreasing with increase in suction parameter as shown in figure 3b. where the values of \( \gamma=0.3, \beta=0.6, Sc=0.8 \), concentration is found to be decreasing with increase in reaction rate parameter shown in figure 3c. where the values of \( S=0.5, \beta=0.6, Sc=0.8 \). Concentration is found to be decreasing with increase in Schmidt number shown in figure 3d. where the values of \( S=0.5, \beta=0.6, Sc=0.8 \).

4. CONCLUSIONS

Effects of mass transfer on the boundary layer flow of a Casson fluid model with chemical reaction are presented. The following observations are found.
1. The Casson parameter $\beta$ and $S$ have similar effects on the velocity profile $f'(\eta)$ and no change in velocity with increase in $\gamma$.
2. Casson parameter $\beta$ has opposite effects on the velocity and concentration profiles.
3. An increase in the Schmidt number $Sc$ causes a decrease in the concentration profile and the boundary layer thickness.
4. When $\gamma = 0$, there is no chemical reaction. An increase in $\gamma$ decreases concentration $\phi(\eta)$.

REFERENCES