Secure and Inverse Secure Total Restrained Domination in Graphs

V. R. Kulli

Department of Mathematics,
Gulbarga University, Gulbarga 585106, INDIA.
email: vrkulli@gmail.com

(Received on: August 22, 2016)

ABSTRACT

A secure total restrained dominating set of a graph $G = (V, E)$ is a total restrained dominating set $D \subseteq V$ with the property that for each $u \in V - D$, there exists $v \in D$ adjacent to u such that $(D - \{v\}) \cup \{u\}$ is a total restrained dominating set. The secure total restrained domination number $\gamma_{str}(G)$ of G is the minimum cardinality of a secure total restrained dominating set. Let D be a minimum secure total restrained dominating set of G. If $V - D$ contains a secure total restrained dominating set D' of G, then D' is called an inverse secure total restrained dominating set with respect to D. The inverse secure total restrained domination number $\gamma_{str}^{-1}(G)$ of G is the minimum cardinality of an inverse secure total restrained dominating set of G. In this paper, we initiate a study of these two parameters. We establish a Nordhaus-Gaddum type result.

Mathematics Subject Classification: 05C69, 05C78.

Keywords: Secure dominating set, secure total restrained domination set, secure total restrained domination number, inverse secure total restrained domination number.

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite, undirected without isolated vertices, loops and multiple edges. We follow the notation and terminology of 1.

A set D of vertices in G is called a dominating set if every vertex in $V - D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. Recently several domination parameters are given in the books by Kulli in2,3,4.

A secure dominating set of G is a dominating set $D \subseteq V$ with the property that for each u in $V - D$, there exists v in D adjacent to u such that $(D - \{v\}) \cup \{u\}$ is a dominating set. The
secure domination number $\gamma_s(G)$ of G is the minimum cardinality of a secure dominating set of G. This concept was studied and introduced by Cockayne \textit{et al.} in5. Many other secure domination parameters were studied, for example, in6,7,8.

A set $D \subseteq V$ is a total dominating set if every vertex in V is adjacent to some vertex in D. The total domination number $\gamma(G)$ of G is the minimum cardinality of a total dominating set of G. A set $D \subseteq V$ is a total restrained dominating set if every vertex of V is adjacent to a vertex in D and every vertex in $V - D$ is also adjacent to a vertex in $V - D$. The total restrained domination number of G, denoted by $\gamma_{tr}(G)$, is the minimum cardinality of a total restrained dominating set of G. This concept was introduced by Telle and Proskurowski in9 and was studied in10,11.

Let D be a minimum dominating set of G. If $V - D$ contains a dominating set D' of G, then D' is called an inverse dominating set of G with respect to D. The inverse domination number $\gamma^{-1}(G)$ of G is the minimum cardinality of a dominating set in G. This concept was introduced by Kulli and Sigarkanti in12. Many other inverse domination parameters were studied, for example, in13, 14, 15, 16, 17, 18, 19, 20.

The join of two graphs G and H is denoted by $G + H$ and it consists of $G \cup H$ and all edges joining every vertex of G with every vertex of H.

In this paper, we define the secure total restrained domination number and the inverse secure total restrained domination number of a graph.

2. SECURE TOTAL RESTRAINED DOMINATION

We introduce the secure total restrained domination of a graph.

Definition 1. A secure total restrained dominating set of a graph G is a total restrained dominating set $D \subseteq V$ with the property that for each $u \in V - D$, there exists $v \in D$ adjacent to u such that $(D - \{v\}) \cup \{u\}$ is a total restrained dominating set. The secure total restrained domination number $\gamma_{tr}(G)$ of G is the minimum cardinality of a secure total restrained dominating set.

Note that $\gamma_{tr}(G)$ is defined only if G has no isolated vertices. Henceforth we consider only graphs with no isolated vertices.

Definition 2. The upper inverse secure total domination number $\Gamma_{tr^{-1}}(G)$ of G is the maximum cardinality of a secure total restrained dominating set of G.

A $\gamma_{tr^{-1}}$-set is a minimum secure total restrained dominating set.

Proposition 3. Let G be a connected graph with $p \geq 2$ vertices. Then $\gamma_n(G) \leq \gamma_{tr}(G)$.

Proposition 4. If D is a secure total restrained dominating set of a graph G, then D is a secure restrained dominating set of G.

\[\text{Definition 3.} \text{ The result follows.} \]

\[\text{Proposition 5.} \text{ If } K_p \text{ is a complete graph with } p \geq 4 \text{ vertices, then} \]
\[\gamma_{str}(K_p) = 2. \]

\[\text{Proof:} \text{ Let } D = \{u_1, u_2\} \subseteq V(K_p). \text{ Then } D \text{ is a secure total restrained dominating set of } K_p. \text{ Since} \]
\[\gamma_{str}(K_p) \geq 2, \text{ the result follows.} \]

\[\text{Proposition 6.} \text{ If } K_{m,n} \text{ be a complete bipartite graph with } 4 \leq m \leq n, \text{ then} \]
\[\gamma_{str}(K_{m,n}) = 4. \]

\[\text{Proof:} \text{ Let } V_1 \cup V_2 \text{ be the vertex set of } K_{m,n} \text{ where } V_1 = \{u_1, u_2, \ldots, u_m\} \text{ and } V_2 = \{v_1, v_2, \ldots, v_n\}. \text{ Let} \]
\[D = \{u_1, u_2, v_1, v_2\} \subseteq V_1 \cup V_2. \text{ Then } D \text{ is a secure total restrained dominating set of } K_{m,n}. \text{ Then} \]
\[\gamma_{str}(K_{m,n}) \leq 4. \text{ Suppose } \gamma_{str}(K_{m,n}) = 3. \text{ Without loss of generality, } D_1 = \{u_1, u_2, v_1\}. \text{ Then} \]
\[D_1 \text{ is not a secure total restrained dominating set, so that } \gamma_{str}(K_{m,n}) = 4. \text{ Hence the result follows.} \]

\[\text{Proposition 7.} \text{ If } W_p \text{ is a wheel with } n \geq 4 \text{ vertices, then} \]
\[\gamma_{str}(W_p) = p - 2. \]

\[\text{Proof:} \text{ Let } V(W_p) = \{u_1, u_2, \ldots, u_p\}, \deg u_1 = p - 1 \text{ and } \deg u_i = 3, \text{ for } 2 \leq i \leq p. \text{ Let} \]
\[D = \{u_1, u_2, \ldots, u_{p-2}\} \subseteq V(W_p). \text{ Since } D \text{ is a secure total restrained dominating set of } W_p, \text{ it follows that} \]
\[\gamma_{str}(W_p) \leq p - 2. \text{ Suppose } \gamma_{str}(W_p) = p - 3. \text{ Then without loss of generality, } D_1 = \{u_1, u_2, \ldots, u_{p-3}\}. \text{ Clearly } D_1 \text{ is not a secure total restrained dominating set, so that } \gamma_{str}(W_p) = p - 2. \text{ Hence} \]
\[\text{the result follows.} \]

\[\text{3. INVERSE SECURE TOTAL RESTRAINED DOMINATION} \]

\[\text{We introduce the concept of inverse secure total restrained domination as follows:} \]

\[\text{Definition 8.} \text{ Let } G=(V, E) \text{ be a graph. Let } D \text{ be a minimum secure total restrained dominating set of } G. \text{ If} \]
\[V - D \text{ contains a secure total restrained dominating set } D' \text{ of } G, \text{ then } D' \text{ is called an} \]
\[\text{inverse secure total restrained dominating set with respect to } D. \text{ The inverse secure total} \]
\[\text{restrained domination number of } G, \text{ denoted by } \gamma_{str}^{-1}(G), \text{ is the smallest cardinality of an} \]
\[\text{inverse secure total restrained dominating set of } G. \]

\[\text{Definition 9.} \text{ The upper inverse secure total restrained domination number of } G, \text{ denoted by} \]
\[\Gamma_{str}^{-1}(G), \text{ is the maximum cardinality of an inverse secure total restrained dominating set of } G. \]

\[\text{A } \gamma_{str}^{-1}-\text{set is a minimum inverse secure total restrained dominating set.} \]
Example 10. Let K_4 be the complete graph. Then $\gamma_{str}(K_4) = 2$ and $\gamma_{str}^{-1}(K_4) = 2$.

Remark 11. Not all graphs have an inverse secure total restrained dominating set.

Theorem 12. Let D be a γ_{str}-set of a nontrivial connected graph G. If a γ_{str}^{-1}-set exists, then G has at least 4 vertices.

Proof: Let D be a γ_{str}^{-1}-set of a connected graph G. Since G has no isolated vertices, $\gamma_{str}(G) = |D| \geq 2$. If a γ_{str}^{-1}-set exists, then $V - D$ contains a secure total restrained dominating set with respect to D. Thus $|V - D| \geq 2$. Thus G has at least 4 vertices.

We obtain the exact values of $\gamma_{str}^{-1}(G)$ for some standard graphs.

Theorem 13. If K_p is a complete graph with $p \geq 4$ vertices, then $\gamma_{str}^{-1}(K_p) = 2$.

Proof: Let D be a γ_{str}-set of K_p. By Proposition 5, $|D| = 2$. Let $D = \{u, v\}$. Then $S = \{x, y\}$ is a γ_{str}^{-1}-set of K_p for $x, y \in V(K_p) - \{u, v\}$. Thus $\gamma_{str}^{-1}(K_p) = 2$.

Theorem 14. If $K_{m,n}$ is a complete graph with $4 \leq m \leq n$, then $\gamma_{str}^{-1}(K_{m,n}) = 4$.

Proof: Let $V(K_{m,n}) = V_1 \cup V_2$ where $V_1 = \{u_1, u_2, \ldots, u_m\}$ and $V_2 = \{v_1, v_2, \ldots, v_n\}$. By Proposition 6, $D = \{u_1, u_2, v_1, v_2\}$ is a γ_{str}-set of $K_{m,n}$. Then $S = \{u_3, u_4, v_3, v_4\}$ is a γ_{str}^{-1}-set of $K_{m,n}$ for $u_3, u_4, v_3, v_4 \in V(K_{m,n}) - \{u_1, u_2, v_1, v_2\}$. Thus $\gamma_{str}^{-1}(K_{m,n}) = 4$.

Proposition 15. For any graph G with a γ_{str}^{-1}-set,

\[\gamma_{str}(G) \leq \gamma_{str}^{-1}(G) \tag{1} \]

and this bound is sharp.

Proof: Every inverse secure total restrained dominating set of G is a secure total restrained dominating set. Thus (1) holds.

The complete graph K_4 and the complete bipartite graph $K_{4,4}$, realize the sharp lower bound.

Proposition 16. If a γ_{str}^{-1}-set exists in a graph G with p vertices, then $\gamma_{str}(G) + \gamma_{str}^{-1}(G) \leq p$ and this bound is sharp.

Proof: This follows from the definition of $\gamma_{str}^{-1}(G)$.

Both graphs K_4 and $K_{4,4}$ achieve this bound.

We establish lower and upper bounds on $\gamma_{str}^{-1}(G)$.
Theorem 17. If a γ_{str}^{-1}-set exists in a graph G with p vertices, then
$2 \leq \gamma_{str}^{-1}(G) \leq p - 2$
and these bounds are sharp.

Proof: By Proposition 15, $\gamma_{str}(G) \leq \gamma_{str}^{-1}(G)$ and since $2 \leq \gamma_{str}(G)$,
$2 \leq \gamma_{str}^{-1}(G)$.
By Proposition 16, $\gamma_{str}^{-1}(G) \leq p - \gamma_{str}(G)$ and since $2 \leq \gamma_{str}(G)$,
$\gamma_{str}^{-1}(G) \leq p - 2$.
Hence the result follows.

The complete graph K_4 realizes the sharp lower and upper bounds.

Now we obtain a Nordhaus-Gaddum type result for secure total restrained domination number.

Theorem 18. Let G be a graph with $p \geq 4$ vertices. If both $\gamma_{str}^{-1}(G)$ and $\gamma_{str}^{-1}(\overline{G})$ exist, then
$4 \leq \gamma_{str}^{-1}(G) + \gamma_{str}^{-1}(\overline{G}) \leq 2(p - 2)$
$4 \leq \gamma_{str}^{-1}(G)\gamma_{str}^{-1}(\overline{G}) \leq (p - 2)^2$

Proof: Since both $\gamma_{str}^{-1}(G)$ and $\gamma_{str}^{-1}(\overline{G})$ exist,
$2 \leq \gamma_{str}^{-1}(G)$ and $2 \leq \gamma_{str}^{-1}(\overline{G})$.
Thus both lower bounds hold.

By Theorem 17, we have
$\gamma_{str}^{-1}(G) \leq p - 2$ and $\gamma_{str}^{-1}(\overline{G}) \leq p - 2$.
Thus both upper bounds hold.

We give some graphs for which $\gamma_{str}(G) = \gamma_{str}^{-1}(G)$.

Proposition 19. For any integer $p \geq 4$,
$\gamma_{str}(K_p) = \gamma_{str}^{-1}(K_p) = 2$.

Proposition 20. For any integers $m, n \geq 4$,
$\gamma_{str}(K_{m,n}) = \gamma_{str}^{-1}(K_{m,n}) = 4$.

Proposition 21. For integers $m, n \geq 4$,
$\gamma_{str}(\overline{K_{m,n}}) = \gamma_{str}^{-1}(\overline{K_{m,n}}) = 4$.

Proof: We have $\overline{K_{m,n}} = K_m \cup K_n$. Therefore
$\gamma_{str}(\overline{K_{m,n}}) = \gamma_{str}(K_m) + \gamma_{str}(K_n) = 2 + 2 = 4$.

424
\[\gamma_{str}^{-1}(K_{m,n}) = \gamma_{str}^{-1}(K_m) + \gamma_{str}^{-1}(K_n) = 2 + 2 = 4. \]

Hence the result follows.

Theorem 22. Let \(G \) and \(H \) be two nontrivial complete graphs. Then
\[\gamma_{str}(G+H) = \gamma_{str}^{-1}(G+H) = 2. \]

Proof: Let \(G \) and \(H \) be two nontrivial complete graphs. Then \(G+H \) is a complete graph with at least 4 vertices. Hence by Proposition 19,
\[\gamma_{str}(G+H) = \gamma_{str}^{-1}(G+H) = 2. \]

Proposition 23. Characterized graphs \(G \) for which
\[\gamma_{str}(G) = \gamma_{str}^{-1}(G). \]

Proposition 24. Characterized graphs \(G \) for which
\[\gamma_{str}(G) + \gamma_{str}^{-1}(G) = p. \]

REFERENCES